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The use of the mild-slope approximation, which is invoked to simplify the problem 
of linear water wave diffraction-refraction by bed undulations, is reassessed by using 
a variational method. It is found that smooth approximations to the free surface 
elevation obtained by using the long-standing mild-slope equation are not consistent 
with the continuity of mass flow at locations where the bed slope is discontinuous. 
The use of interfacial jump conditions at such locations significantly improves the 
accuracy of approximations generated by the mild-slope equation and by the recently 
derived modified mild-slope equation. The variational principle is also used to produce 
a generalization of these equations and of the associated jump condition. Numerical 
results are presented to illustrate the main points of the theory. 

1. Introduction 
The mild-slope approximation was introduced by Berkhoff (1973) as a way of 

approximating the refraction and diffraction of linearized surface waves on water 
of varying quiescent depth. On the basis of the mild-slope assumption, that the 
relative change in the equilibrium water depth over a wavelength is small, Berkhoff 
approximated the vertical structure of the fluid motion by using the local flat bed 
solution corresponding to propagating waves. An averaging process over the fluid 
depth then removed the vertical coordinate from the governing equations, leaving 
a boundary value problem posed only in terms of the horizontal coordinates. This 
simplification may be regarded as an extension of the shallow water approximation. 
Indeed, the mild-slope equation reduces to the familiar shallow water equation, for 
time-harmonic motions, if the long wave approximation is invoked. It is, of course, 
the reduction in the dimension of the problem and therefore in the computational 
effort required to solve refraction-diffraction problems which gives significance to the 
mild-slope equation. 

Smith & Sprinks (1975) gave another derivation of the mild-slope equation, similar 
to that of Berkhoff but more succinct, and the mild-slope approximation has since 
been used to produce other equations which model the effect of bed topography on 
wave propagation. Kirby (1986), responding to the failure of the mild-slope equation 
to approximate adequately wave scattering by a ripple bed (consisting of a finite patch 
of periodic undulations set in an otherwise horizontal bed), gave what is referred to 
as the extended mild-slope equation. This equation, which was also derived using 
the vertical averaging technique, applies where the bed profile consists of a rapidly 
varying small-amplitude component superimposed on a slowly varying component 
(in the sense of the mild-slope approximation). In particular, Kirby showed that the 
extended mild-slope equation successfully models the principal resonance found in 
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ripple bed scattering, by comparing numerical calculations with experimental data of 
Davies & Heathershaw (1984). 

More recently, Chamberlain & Porter (1995~) have produced the modified mild- 
slope equation, which contains the original mild-slope equation and its extended 
version as special cases. We shall need to refer to the derivation of the modified mild- 
slope equation later and at present need only to remark on its principal features. The 
equation results from the use of a one-term trial function, based on the propagating 
wave mode over a flat bed, in a variational principle corresponding to the underlying 
boundary value problem. An equivalent derivation, using the Galerkin weak form 
of the boundary value problem, formalizes the vertical averaging procedure used by 
Berkhoff (1973), Smith & Sprinks (1975) and Kirby (1986). Both the variational and 
weak form approaches show that the two approximations which together lead to the 
mild-slope equation, namely the use of the one-term trial function mentioned above 
and the discarding of terms which are small on the basis of the mild-slope hypothesis, 
are essentially independent. The second of these approximations is not used in the 
derivation of the modified mild-slope equation. 

Booij (1983) examined the accuracy of the mild-slope equation by carrying out a 
number of numerical calculations. In particular, he considered the scattering of a plane 
wave train normally incident on a bedform consisting of a plane sloping section linking 
two horizontal plane sections. By comparing the amplitude of the reflected wave 
predicted by the mild-slope equation with that given by solving the unapproximated 
(‘full linear’) boundary value problem using the finite element method, Booij concluded 
that the mild-slope equation can be used in scattering problems with bed slopes up 
to 1 in 3. We consider Booij’s problem in $5. 

Despite the marked improvement over the mild-slope equation which it produces 
for ripple bed scattering, Chamberlain & Porter (1995~) found that the modified 
mild-slope equation performs no better than its predecessor when used in Booij’s 
problem. In the present paper we explain this result and, in the process, show 
how approximations based on the original mild-slope equation can be significantly 
improved. Previously, solutions have been derived which are continuous and have 
continuous first derivatives. These solutions are physically plausible in that they 
imply continuity of the approximation to the free surface and its slope. However, 
such solutions are not consistent with the requirement of conservation of mass at 
locations where the bed profile has a discontinuous slope. We show, by using 
a variational principle, that solutions of the mild-slope equation and its modified 
version must satisfy a jump condition where the bed slope is not continuous, in order 
to ensure continuity of mass flow. This condition, which overrides that of continuity 
of free surface slope, not only establishes the superiority of the modified mild-slope 
equation when used to solve Booij’s problem, but also improves the accuracy of 
solutions given by the mild-slope equation. 

To show how the overall approximation technique can be developed, and to 
check the accuracy of those approximations based on the mild-slope hypothesis, we 
use an extended trial function in the variational principle, incorporating a finite 
number of terms including the local propagating mode. The corresponding jump 
condition which ensures mass conservation where the bed slope is discontinuous 
is also derived. It is found that a similar higher-order approximation derived by 
Massel (1993) using Galerkin’s method is deficient in that mass conservation is again 
violated. 

Results of numerical calculations are given to illustrate the main points of the 
work. 
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2. A variational principle 

We use Cartesian coordinates (x, y, z) with z measured vertically upwards from the 
undisturbed free surface and the bed given by z = -h(x, y) where h is a continuous 
function. 

The usual assumptions of linearized water wave theory and the removal of the 
harmonic time dependence exp( -iat) lead to the familiar equations 

v2Cp = 0 

Cpz-v$ = o  1 (-h < z < 0) , 

where v = a2/g, V = (d/dx,d/dy,d/dz) and v h  = (d/dx,d/dy). The free surface 
elevation is given in terms of the time-independent potential Cp(x, y, z )  by 

Other conditions satisfied by 4, such as those to be applied on lateral boundaries or 
asymptotically if the fluid extends to infinity, do not immediately concern us. 

Chamberlain & Porter (19954 derived the modified mild-slope equation by making 
use of the functional 

where 
0 1 

F = -V 2 (Y2)z=o - ./ -h ( V Y ) ~  dz 

and D denotes a simply connected domain in the plane z = 0, with boundary C. If Gy 
denotes an arbitrary variation in V ,  we find after some straightforward manipulation 
that the corresponding first variation in L can be written as 

where 

and n is the outward normal unit vector on C. 
It follows that L is stationary for arbitrary variations 6~ which vanish on C x [-h, 01 

if and only if y = Cp where Cp satisfies (2.1) in D x [-h,O]. 
Now suppose that we introduce a smooth, simple curve r which divides D into 

two simple connected domains, D- and D,, say. r may join two points of C or it 
may lie wholly within D. We readily find that the first variation of the new functional 
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is given by 

where nj- denotes the unit normal vector on r ,  directed from D- to D+, say. We have 
also introduced the notation [ . ] which denotes the jump in the value of the enclosed 
quantity across the surface r x [-h,O] in the sense that [y] = y- - y+, using the 
subscripts +_ in the obvious way. 

If we now suppose that [y] = 0 and consider variations in y which vanish on 
C x [-h,O] and satisfy [Sy] = 0, we see that 3 is stationary at y = b, if and only if 
b, satisfies (2.1) in Dk x [-h,O] together with 

[+I = 0, [nr * &b,] = 0 . (2-4) 
The first element of (2.4) follows by hypothesis and represents continuity of pressure 
across f x [-h,O]. The second element is a consequence of 6 3  = 0 and represents 
continuity of normal velocity, and therefore continuity of mass flow, across r x [-h, 01. 

Approximations to the solution of (2.1) follow by using the Ritz method, in which y 
is restricted to a particular class of functions and an approximation to the stationary 
point of L ( y )  or of 9 ( y )  is found from within this class. The modified mild-slope 
equation was derived by Chamberlain & Porter (1995~) in this way, by using L(y). 
The key feature of the new functional 3 ( y )  is that, in addition to approximating the 
solution of (2.1), it produces a consistent approximation to the conservation of mass 
across an interface between two contiguous domains. 

More sophisticated variational principles can be devised which have a radiation 
condition on C x [-h,O] as a further natural condition, for example. However, it is 
sufficient to determine consistent approximations to the interfacial conditions (2.4) 
and implement these in other conditions which arise. 

3. The modified mild-slope equation 
Following Chamberlain & Porter (1995a), we first approximate $(x, y, z) by 

where k = k(x,y), the local wavenumber, is the positive, real root of the local 
dispersion relation 

corresponding to the depth h(x, y). The corresponding approximation to the free 
surface elevation is given by [(x,y, t) fi: Re {b,~(x,y)e-~~~}.  Over a flat bed, this y is 
an exact solution of (2.1) with V ~ + O  + k2& = 0. 

Using (3.1) in L(y) ,  we obtain a new functional L1(b,0), say, and a straightforward 
calculation gives 

v = k tanh(kh) ( 3 4  
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where 

For variations 640 which vanish on C, the stationary principle 6L1 = 0 gives G = 0 
in D, which is the modified mild-slope equation, expressible in the neater form 

(3.3) vh ’ uovh40 + { k 2 U o  -I- U i V h 2 h  + U 2  (Vhh)2} 40 = 0 . 

The coefficients UO, u1 and u2 can be expressed as functions of h, using (3.2) to define 
k = k(h)  implicitly, and are given by 

Some details of the calculation leading to (3.3) may be found in Chamberlain & 
Porter ( 1 9 9 5 4 ;  explicit expressions for ui(h), i = 0,1 ,2  are given in $4. 

Suppose now that (3.1) is used in the functional Y ( y ) ,  with $o(x,y)  assumed to be 
continuous across r .  If variations ~340 are considered which vanish on C and satisfy 
[640] = 0 , the natural conditions of the corresponding stationary principle consist 
of (3.3), holding in D- u D,, together with the jump condition 

r rO 1 

applying at each point of I‘. Since Vh(WO40) = WOvh40  + 40(8wO/ah)Vhh and 40 and h 
are continuous by assumption, we can arrange (3.5) in the form 

ui40 [nr Vhhl + uo [nr * Vh+ol = 0 ( 3 4  

on r ,  using the notation of (3.4). 
This jump condition is therefore the form taken by mass conservation at an interface 

between two domains, when the particular approximation 4 = y given by (3.1) is 
used. Continuity of surface elevation (and therefore of pressure) is implied by seeking 
solutions of (3.3) which are everywhere continuous. 

We see that where the bed slope Vhh is continuous, continuity of mass flow is 
guaranteed by seeking solutions of (3.3) which have continuous first derivatives. 
However, at locations where the bed slope is discontinuous, mass flow is conserved 
only if an internal boundary is inserted at that location and [40] = 0 together with 
(3.6) are imposed across that boundary. 

We can, of course, derive (3.6) from (3.3). For, suppose that 40 and h (and hence 
UO, u1 and u2) are continuous across r but that Vhh is not. Integrating (3.3) over a 
narrow strip containing r and shrinking this strip onto r from both sides readily 
leads to (3.6). This consistency between (3.3) and (3.6) is inevitable, as the calculation 
we have just described is merely an alternative presentation of that inherent in the 
variational principle 6 9  = 0. 

This viewpoint does, however, expose a deficiency in previous calculations involving 
the mild-slope equation, which is given by deleting the terms 0 (Vih, (Vhh)’) in (3.3) 
on the basis of the mild-slope approximation lVhhl-&h and is therefore 

vh * Uovh$o + k2u040 = 0 . (3-7) 

The corresponding deletion of the first term in (3.6) would result in an imbalance 
in the mass flow at every location where the bed slope is discontinuous, and is not 
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necessary to achieve consistency with (3.7). To see this, let &h/kh = O(e) ,  where €31 
and suppose that Vhf,f)O/k$hO = O(1). Then the terms in (3.3) which are ignored to 
give (3.7) are O(e2)  relative to the terms which are retained. However, the first term 
in (3.6) is O(e) relative to the second and its retention must therefore significantly 
improve the approximation to 4 given by (3.7). 

It should be noted here that, prior to the derivation of (3.6) by Chamberlain & 
Porter (1995a), the mild-slope equation (3.7) had been obtained directly, rather than 
as a special case of (3.3), the terms 0 (V&(Vhh)2) being discarded within the overall 
approximation process (see Berkhoff 1973; Smith & Sprinks 1975). The 'natural' 
jump conditions associated with (3.7) are merely [40] = [n V&o] = 0, which follow 
from the application of the limiting process described above, and solutions of that 
equation have accordingly been sought which are continuous and have continuous 
first derivatives. The present approach shows that [40] = 0 and (3.6) are needed to 
conserve mass flow where Vhh is discontinuous, for both (3.3) and (3.7), and that a 
smooth approximation to the free surface elevation cannot also be achieved at such 
places. Numerical results given in $5 compare the effects of using the different jump 
conditions with (3.7) and confirm the predicted improvement which (3.6) provides. 

A related, but simpler, situation arises in the shallow water approximation to 
plane wave scattering by a vertical step (see, for example, Lamb 1932). Here also, 
the appropriate matching conditions at the step are continuity of the free surface 
elevation and of mass flow, and they result in a discontinuous free surface slope. In 
fact, we can derive the appropriate equations by using the variational approach. If 
we temporarily suspend the hypothesis that h is continuous and use the trial function 
y(x,  y, z )  = ~ ( x ,  y), say, we find that the natural conditions of 6 3  = 0 are the familiar 
shallow water equation VJ, hVhX + v x  = 0 in D- U D+, with [hnr - V h X ]  = 0 on F ,  
which represents continuity of mass flow at places where h is discontinuous. While the 
local solution at the step is not physically plausible, the scattered wave amplitudes 
are correct in the long wave limit, as shown by Bartholomeusz (1958). A similar 
conclusion follows from our numerical solutions of (3.3) and (3.7). 

4. An extended approximation 

taking 
We now consider the effect of using a generalization of (3.1) to approximate 4, 

The functions wn are assumed to be assigned but we do not need to specify them for 
the moment. We shall, however, return to (3.1) to provide the leading term of (4.1). 

The functions $,, are to be determined and if we use (4.1) in L(y)  we obtain a 
functional 152(4~, ..., 4N), say, whose first variation can be inferred from (2.3) in the 
form 

where y is given by (4.1). It follows that L2 is stationary for independent variations 
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a+,, all of which vanish on C if and only if 

373 

+ ((wn ((wm)z+Vhh ' Vhwm))z,-T; ( ~ n ( ( ~ m ) ~ - ~ ~ m ~ ) z i ~ ) ( P m  =o, (4.2) 1 
for n = 0, ..., N .  

r ,  we obviously obtain the jump conditions 
If we substitute (4.1) into Y ( y )  instead and enforce continuity of each & across 

Itr '5 [lwnVh(Wm(Pm)dZ I = o  ( n = O ,  ..., N )  (4.3) 
m=O 

to be applied at locations where the bed slope is discontinuous. 

functions wn at this stage, namely that each satisfies 
The approach so far is quite general but we impose certain conditions on the 

( w ~ ) Z  - VW, = 0 (Z = 0) , (wn)z = 0 (Z = -h) (4.4) 

for all points ( x , y )  and that 

J_o, wnwmdz = 0 ( m  # n) 7 (4.5) 

also at each ( x ,  y ) .  After some manipulation we then find that the system of equations 
(4.2) can be written as 

for n = 0, ... N and that (4.3) becomes 

A more convenient form of these equations is obtained through use of the identity 
h w ,  = (aw,/ah)Vhh, followed by some rearrangement, to give the system of differential 
equations 

N 

Vh'a~Vh(Pn+C((bmn-b,)Vhh'V~(Pm+ ( b m n V h 2 h  + Cmn(Vhh)2+dmn) (Pm} = 0 (4.6) 
m=O 

for n = 0, ... N and the system of jump conditions 
N 

[nr Vh(Pn] an + [nr Vhh] bm,(Pm = 0 ( n  = 0, ..., N ) .  (4.7) 
m=O 
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Here we have introduced the functions 

with b,’ denoting dbmn/dh, and 

We now make a particular choice of the functions w, which extends (3.1) in a 
natural way, namely 

w,(h, z )  = sec (k,h) cos (k,(z + h)) (n = 0, ..., N ) ,  (4.9) 

where kl(h), ..., kN(h) denote the positive, real roots of 

k,  tan(k,h) = -v , (4.10) 

arranged in ascending order of magnitude, and ko(h) = ik(h), which subsumes the 
function wo of (3.1) into the set (4.9). This set satisfies (4.4) and (4.5) and can therefore 
be used in (4.6) and (4.7). The minor simplification d,, = -k;a,, d,, = 0 (m # n) can 
be made in (4.6) as a result of the choice of (4.9). 

For this choice, the system (4.6) is a generalization of the modified mild-slope 
equation (3.3) and (4.7) is the corresponding extension of the mass flow jump condition 
(3.6). The correspondence between the notation of the present section and that of 93, 
which is deliberately aligned with Chamberlain & Porter (19954, is a0 = UO, boo = U I  
and coo = 4. If the terms 0 (V$, (Vhh)2) are neglected in (4.6), on the basis of the 
mild-slope approximation, the simplified system which results may be regarded as an 
extension of the mild-slope equation of Berkhoff (1973). However, there seems to be 
little justification in seeking a higher-order approximation and discarding some of the 
resulting terms. 

We now restrict attention to two-dimensional scattering problems, such as that 
considered by Booij (1983) to examine the mild-slope equation. We therefore let 
h = h(x) and 4, = &(x) (n = 0, ..., N) so that (4.6) and (4.7) reduce to 

N 

(an$;(x))I- k;an$n(X) + C{ (bmn - bnm)hl(x)4d(x) 
m=O 

+ (bmnhlt(x) + cmn ( h ’ ( ~ ) ) ~ )  +rn(.,> = 0, (4.11) 

for n = 0, ... N, and 
N 

[ 4 ; ( ~ ) ]  an + [hl(x)] C bmn4m(x) = 0 (n = 0, ..., N ) ,  (4.12) 
m=O 

respectively. 
On an interval where h is constant, (4.11) is simply q5,”-kf12(h)4, = O  (n = 0, ..., N), 

so that 40 is a linear combination of the propagating wave modes exp(+ik(h)x) and, 
for n> 1, ( P n  is a linear combination of the evanescent modes exp(+k,(h)x). From this 
point of view, the choice (4.9) of the expansion set is particularly appropriate for the 
bed profile h = h(x).  

For the purpose of numerical calculations, explicit expressions are required for the 
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coefficients defined by (4.8). We find from (4.9) that 

awn -(h, z )  = -k,'(h)sec(k,h) [z sin(k,(z + h)) - k,-* sin(k,h) sin(k,z)] 
a h  

where, from (4.10), 

Straightforward, if tedious, calculations then give 
k,'(h) = -2kn2 (2knh + sin(2k,h))-' . 

1 
a - - tan(k,h) 
- 2k, 

375 

-2kmsec( k,h)sec(k,h) + (km4 -kn4) sin2(kmh) 
2kmh + sin(2kmh) (k,* - km2)* 

Cmn = 

4Kn3 sin(&) + 9 sin&,) sin(2K,) 

1 

--k,sec2(k, h) 
12 (K,+sir~(K,))~ Cnn = 

-3Kn(K,+2 sin(K,))(cos2(K,) - 2 COS(K,)+~) , J 
where K, = 2k,h. We have already noted that the coefficients occurring in (3.3) and 
(3.6) are included in this set. 

Massel (1993) has used Galerkin's method to implement the particular approx- 
imation resulting from the expansion set (4.9). However, he derives the matching 
conditions incorrectly with the result that he fails to ensure continuity of mass flow 
at the interface between two domains. Although the variational approach developed 
in the present paper gives the clearest view of the approximation process and its 
relationship to physical principles, Staziker (1995) has obtained the correct general 
matching conditions (4.12) for two-dimensional scattering by using a Galerkin weak 
form. We note that Massel (1993) does not give numerical results for N > 0. 

5. Applications and numerical results 
As our principal aim is to re-assess Booij's (1983) results in the light of the 

mass-conserving jump condition and the extended approximation, we consider the 
scattering of a plane harmonic wave train by the bed profile h = h(x), where 

ho, hl and 1 being given constants. 
We have already noted the simple form taken by the solutions of (4.11) on an 
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interval where the bed is horizontal and accordingly set 

(x < 0) (5.1) 

%(hob + Re-%(ho)x 40b) = e  

&(x) = Anekn(ho)x ( n  = 1, ..., N )  

and 

(x > 1). (5.2) 

40(x) = TeWh)(x-r) 

= B e-kn(hl)(x-l) (n = 1, ...) N )  
We have restricted attention to a wave incident from the left, for definiteness, but 
only trivial amendments are required to include a wave incident from the right. 

The principle unknowns are the complex amplitudes R and T of the scattered 
waves. These are obtained by finding that solution of (4.11) for 0 < x < 1 which 
matches correctly with (5.1) and (5.2). Assuming that h’(x) is discontinuous at both 
x = 0 and x = 1 (as is the case in Booij’s problem) the matching conditions to be 
applied at these locations are [4,] = 0 for n = 0, ..., N and (4.12). Noting from (5.1) 
that 4<(0-) + ik(ho)&,(O) = 2ik(ho) and that &’(O-) - k,(ho)6,(0) = 0 for n = 1, ... N ,  
we find that 

N 

ao40’(0+) +h’(o+)x b m o 4 m ( O ) + i a o k ( h o ) 4 o ( O )  = 2iaok(ho), 
m=O 

N } (5-3) 

where the coefficients a, and b,, are evaluated at h = ho. Similarly, 
N 

m=O 

N 
} (5.4) 

1 ~a+n’(l-)+h’(l-)x b m n 4 m ( l ) + a n k n ( h l ) 4 n ( l )  = 0 (n  = 1, --, N ) ,  
m=O 

where the coefficients are evaluated at h = h l .  

Together, (5.3) and (5.4) provide 2N + 2 boundary conditions to be associated with 
(4.11), holding on 0 < x < 1. In the case of the modified mild-slope equation (3.3) 
(corresponding to N = 0) these conditions take the form 

(5.5) 1 uo(ho)40’(0+) + (h’(O+)ui(ho) + iuo(ho)k(ho)} 40(0) = 2iuo(ho)k(ho) , 

uo(h1)40’(~--) + {h’(1-)u1@1) - iuo(h1)Wi)) 40(0 = 0, 

when the notation of (3.3) is reinstated. In all cases the required scattered wave 
amplitudes are recovered by using R = &(O) - 1 and T = 40(l). 

Details of the numerical procedure used to complete the solution of the problem 
may be found in Staziker (1995) and it is sufficient to describe the main features 
here. By writing y ,  = &’ for n = 0, ... N, (4.11) can be replaced by an equivalent 
first-order system of the form #(x) = A(x)t$(x) where 4 = (40, ..., $N, yo, ..., W N ) ~  and 
A is a (2N+2) x (2N+2) matrix. Any solution of this system can be written in terms 
of the 2N + 2 linearly independent functions defined by the initial value problems 
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$j ’=A$j ,  $j(0)=(O, ..., 0,1,0, ..., 0) (j  = 1, ..., 2N+2), the only non-zero element in the 
initial value of #j occurring in the j th component. In particular, the solution 
of (4.11), (5.3) and (5.4) can be expressed as a linear combination of the vectors 
tPj ( j  = 1, ..., 2N+2), and the values of $0(0) and $o(l)  thereby determined. The initial 
value problems are solved by using the default numerical solution method for first- 
order systems of differential equations on MATLAB. This numerical method is a 
fifth-order Runge-Kutta procedure given by Fehlberg (1970) and details of how it 
is implemented on MATLAB can be found in Forsythe, Malcolm & Moler (1977). 
Numerical calculations have shown that this method is sufficiently robust for the 
parameter values which we consider here. 

Booij’s problem corresponds to the bed profile 

h(x)  = ho (1 - 2)  
so that hl = ho/3. Results are given for the (real) reflected wave amplitude IRI, plotted 
against the dimensionless slope length W, = vl with the parameter vho held constant 
and equal to 0.6. Thus W, .+ 0 corresponds to l/ho + 0. 

We first give two graphs which are obtained by using the matching conditions 
[44 = 0 and [&’I = 0 at x = 0 and x = 1. Figure l(a) contains the information 
first given by Booij (1983), superimposed on which is the graph of JRJ following from 
use of the modified mild-slope equation and given by Chamberlain & Porter (1995~) .  
Figure l(b) shows the effect of the extended approximation, the curves for N = 1,2,3 
corresponding to Massel’s (1993) approach (although Massel did not compute the 
graphs). For clarity, we only show that part of the graph for N = 3 where it 
is noticeably different from that for N = 2, and so on. We note that the curves 
approximating IR) separate from the values given by the unapproximated equations 
for W, < 1.2, corresponding to slopes in excess of 1 in 3. This is the basis of Booij’s 
widely quoted upper limit on the gradient allowed by the mild-slope approximation. 

The corresponding graphs obtained when the mass-conserving conditions are used 
at x = 0 and x = 1 are given in figures 2(a) and 2(b). These conditions are (5.5) for 
the mild-slope equation and its modified version and (5.3) and (5.4) for the extended 
approximation. 

The revised graph based on the mild-slope equation, but used with the ‘unnatu- 
ral’ jump conditions ( 5 . 9 ,  show that a good approximation is obtained for values 
W, 2 0.4, corresponding to gradients less than about 1 in 1. Figures l(a) and 2(a) 
substantiate our earlier observations that the deletion of the term involving [n - Vhh] 
is more significant than the approximation of (3.3) by (3.7). The mild-slope and 
modified mild-slope versions of IRI part company at the same value of W, in both 
figures l(a) and 2(a), and this is where the additional O(e2)  terms in (3.3) become 
significant. However, the O ( E )  term in (3.6) is responsible for the major differences 
between the two sets of graphs, for all values of W,. 

We observe that the modified mild-slope equation, used with the correct boundary 
conditions, gives a good approximation to the full linear version of (Rl for quite steep 
slopes (the smallest value of W, shown, 0.05, corresponds to a slope which makes an 
angle in excess of 80” to the horizontal). The use of the extended trial space together 
with the boundary conditions (5.3) and (5.4) produces a further improvement, but 
perhaps not enough to justify the additional computational effort required. For other 
bed geometries, the higher-order approximation is more significant as the further 
example below illustrates. 
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FIGURE 1. (a) Comparison of reflected amplitudes for Booij’s test problem with a smooth 
approximation to the free surface. (b )  As (a) but including extended approximations for N = 1,2,3. 

Rey (1992) also considered Booij’s problem using a quite different approximation 
to the full linearized problem. His approach involves approximating the bed profile 
by a series of horizontal shelves separated by abrupt vertical steps. This series of 
steps is further subdivided into smaller subsystems of steps called patches. The 
approximation takes account of evanescent wave modes in a particular way. In each 
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FIGURE 2. (a) Comparison of reflected amplitudes for Booij's test problem with mass conservation 
imposed. (b) As (a) but including extended approximations for N = 1,2,3. 

patch, the decaying modes generated at one step are not assumed to be negligible at 
neighbouring steps in the patch. However, the decaying modes generated in one patch 
are assumed to be negligible at neighbouring patches. The results obtained by Rey 
using this intricate and computationally expensive method are in good agreement 
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F~GURE 3. Comparison of reflected amplitudes for the elevated bed topography test problem (a) 
with a smooth approximation to the free surface and (b)  with mass conservation imposed. 

with those obtained here when the correct mass-conserving boundary conditions at 
x = 0 and x = 1 are applied. 

Figures 3(a) and 3(b) give various approximations of the reflected wave amplitude 
corresponding to the topography consisting of the symmetric elevation 
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h(x) = ho (2 (3)’-2 (3) + 1} (0 < x < l ) ,  

with ho = hl. The parameter W, = vl, as before, and vho = 1 is chosen for illustration. 
In the limit W, + 0 the topography reduces to a thin vertical barrier of height iho, 
for which the approximations developed here are inappropriate. In this case the 
‘exact’ (full linear) solution is obtained by an integral equation method which will be 
reported elsewhere (see Staziker, Porter & Stirling 1995). 

The graphs in figure 3(a) are obtained by using the matching conditions [4J = 0 
and [$I.’] = 0 at x = 0 and x = 1. Figure 3(b) shows the significant effect of replacing 
the second of these by the mass-conserving jump conditions and that the use of an 
extended, but small, trial space improves the approximation given by the modified 
mild-slope equation. 

6. Conclusions and remarks 
The systematic approach to the mild-slope approximation which variational meth- 

ods provide, which was used by Chamberlain & Porter (1995a) to derive the modified 
mild-slope approximation, is more fully exploited in the present work. In particular, 
an interfacial matching condition is derived for the modified mild-slope equation 
which must be imposed at locations where the bed slope is discontinuous to ensure 
continuity of mass flow there, at the expense of continuity of free surface slope. 

It has been shown that the range of validity of the mild-slope equation is increased 
by regarding that equation as an approximation to the modified mild-slope equation 
but retaining the full interfacial condition. This apparently inconsistent coupling has 
been justified by a quantitative argument, and confirmed by numerical results. Thus, 
Booij’s (1983) estimate of a maximum slope gradient of 1 in 3 is revised to 1 in 1. 

In the same paper, Booij (1983) considered the different problem of waves prop- 
agating in a direction parallel to the contours of a sloping bed which terminates 
in vertical walls at its upper and lower edges. For this (eigenvalue) problem where 
conservation of mass is guaranteed without the need for internal boundaries, Booij 
concluded that gradients up to 1 in 1 are permissible. We now see that the conflicting 
maximum gradients resulting from Booij’s work are not due to the different types of 
problem he considered but to the incorrect application of the mild-slope equation to 
the scattering problem. 

In $1 we referred to the extended mild-slope equation devised by Kirby (1986). As 
pointed out by Chamberlain & Porter (19954, this approximation is something of a 
hybrid which does not fit neatly into the variational approach, but it is appropriate to 
mention it again here for the sake of completeness. Kirby defined the bed to be the sur- 
face z = -h(x, y) + d ( ~ ,  y ) ,  and expanded the bed condition 4z + Vhh - vh4 = 0 to give 

4z + Vhh ‘ vh4 - vh 8vhQ!J = 0 ( Z  = -h), 
on the assumption that the term 6 represents small-amplitude oscillations about the 
mean (mild-slope) bed level z = 4. Berkhoff’s (1973) vertical averaging procedure 
was then implemented, 4 being approximated by the function y given by (3.1). We 
infer that the approximate interfacial condition required to ensure continuity of mass 
flow is the same as that derived for the mild-slope equation, namely (3.6). It should be 
noted, however, that Kirby’s (1986) application of the extended mild-slope equation 
to ripple beds, in which continuity of the free surface slope is imposed, is correct, for 
in this case h is regarded as the (constant) mean depth of the ripples and 6 alone 
represents the undulations. 
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One further remark is in order in relation to ripple beds. We noted earlier that 

the modified mild-slope equation is successful in predicting the main features of 
ripple bed scattering, and in particular the resonant peaks, even without the correct 
matching condition (3.6) (see Chamberlain & Porter 1995~). Numerical calculations 
have shown that, in contrast to the two problems considered above, the matching 
conditions have virtually no effect in the case of ripple bed problems. This feature 
can be explained by reference to Chamberlain & Porter (1995b), who have analysed 
the cumulative effect of scattering by ripples and shown that different models of the 
process are capable of producing very similar results. 

A further amplification of the work of Chamberlain & Porter (1995~) included 
here is a higher-order approximation, which extends the original mild-slope concept. 
The basic variational principle is again invoked to produce a set of coupled partial 
differential equations, independent of the vertical coordinate, and a consistent mass- 
conserving interfacial condition. This derivation corrects previous work of Massel 
(1993) and produces results for scattering by a sloping bed consistent with the 
computationally more expensive bed discretization method of Rey (1992). 

Solutions of the full linear problem for other bed geometries consisting of local 
elevations are being developed by using integral equation methods (Staziker et al. 
1995), and these will allow further assessments of the present work to be made. 

D. J. Staziker is grateful to EPSRC for financial funding under grant number 
9 10007 20. 
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